
In conclusion, we will present some of the dimensional quantities corresponding to 
plate motion with Re* = 3'i0 s in an electrolyte with o = 1012 i/see. Let 2a = 102 cm. 
Then from Eq. (2.6) at 6 = 0.4 it follows that ~ = 9.104 i/see, and from Eq. (4.4) and 
vo/uo = 0.39 we have vo = 1.2"10-* em/sec~ from Eq. (4.3), (2.5) we determine the amplitude 
of the maximum magnetic field intensity Ho = 2~lo/sec = 2.7 G. 
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UNSTEADY FLOW OF A NON-NEWTONIAN LIQUID WITH A POWER RHEOLOGICAL LAW 

PAST A FLAT PENETRABLE PLATE 

V. I. Vishnyakov and A. P. Shakhorin UDC 532.526,2,53 

We analyze the problem of the unsteady flow of a non-Newtonian liquid with a power 
rheological law pasu a flat penetrable plate. In contrast with [i], where a similarly posed 
problem is treated for a pseudoplastic liquid, we solve the problem for a dilatant liquid. 

For a non-Newtonian liquid with a power rheological law, the relation between the 
shear stress T and the velocity gradient ~u/~z for plane motion has the form [2] 

IOu] n-lOu ( n > O ) ,  
"c = k l ~  I ~ 

where k and n are rheological constants of the medium; the case n = i corresponds to New- 
ionian liquid, n < 1 to a pseudoplastic liquid, and n > 1 to a dilatant liquid, 

The problem of the flow of a non-Newtonian liquid with a power rheological law past 
an infinite flat plate in the presence of uniform suction of liquid depending on time ac- 
cording to a definite law was treated in [i]. This problem was solved for pseudoplastic 
(n < I) and Newtonian (n = I) liquids. We solve the problem in a similar formulation with- 
out restriction on the possible values of n > 0. 
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We consider the unsteady flow of a power-law liquid past a flat surface z = 0 (Fig. i) 
across which there is a transverse motion of liquid with the velocity 

I 
" I--~I \ ~'t+ 1 n 

where !B = const is the velocity of the incoming flow; t, time; to, initial time; and a = 
k/p. 

In the boundary-layer theory approximation the equation of the nongradient motion of 
a power-law liquid can be written in the form 

au au a [ OuY ~ 
ot + v (t) = 
- ~ ~ k ~ l  �9 ( 2 )  

The problem of the existence and general character of the behavior of the solution of 
an equation of the type (2) is covered in detail in [3, 4]. 

An exact analytic solution of Eq. (2) for an arbitrary law of motion of the liquid 
v(t) has not beenobtained, but an exact self-slmilar solution of Eq. (I) exists. 

The boundary conditions in the case under consideration are 

u(O) = 0, u(oo) = u . .  ( 3 )  

The self-similar variable ~ and the velocity u are written in the form 
1 (<-o1,,+, !1 = \ t--~-~ ] (t + to) n + l Z ,  U = U./(1]). (4) 

By using (I) and (4) the solution of (2) and (3) can be reduced to the integration of the 
ordinary differential equation 

with the boundary conditions 

n - -  J d [~ /  ~ ,1"-1 (s) 

i ( o )  = o, l ( o o )  = I. (6) 

Integrating (5) twice, we obtain 

1 n 1 

/ (q)  : L ~ J  J ( ' P ' I -  n2 + const) d, 1. (71 
0 

The solution of Eq. (5) is essentially different far n < ! and n > l, and therefore 
we treat these cases separately, 

For n < 1 it is convenient to rewrite Eq. (7) in the form 

1 'N 1 

[0]) = [ ~ ]  S [(~1 --  [$)~ -b AS]n-1 d~l,, 
0 
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where A is a constant to be determined. 

By introducing the new variables E = n -- B, and using boundary condition (6), we obtain 

i (g~ + A~) ~-1 dg - -  ~-~ .  (8) 

Evaluating the integral on the left-hand side of (8), we obtain a transcendental equation 

for the constant A 

t .4"ELyB n § 1 1 t 3 
-2 ' 2(iI : n )  -Jr- A ' - Z ~ B  1, F n - - l '  2 '  2 '  A" 

l 

= L " ~ -  ~ J ' 

where B (p, q) is the beta function and F (a, 6, Y, z) is the hypergeometric function. 

For n > i we have 

[ u , - I )  1 .f (B) = 1.2 (n -F 1) J j" [C* - - (n  -- i [~) ' ]  n - '  dn, 
o 

(9) 

where C is a constant to be determined. 

Study of (9) shows that a limiting value q = qf exists such that for all ~ >qf f(q) = 
i, i.e., shear perturbations for n > i are localized within a finite distance from the sur- 

face of the plate. 

By introducing the new variable 

(y - -  p)~ = C ~, 

we obtain two supplementary conditions: 

101) = 1, dHdqin=y = O. (la) 

Taking account of (I0), we have 

fl t 1 

. -  1o_1 f[(y_~)2_(n_~)2]" zdq=L n--i ] 
o 

(ll) 

Introducing the variables 0 = n- ~ and v = z -- 6, and evaluating the integral in (Ii)~ we 

find an equation for C 
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y ~ - I  B , n 
- ~ - - 4 - - ~  

.~-'~-~-I In+l [ ( n )_B ( --1"n _n )i >'~]=[2('n-{-1)]n!l 

where Bp(p, q) is the incomplete beta function. 

Results calculated with the equations derived are shown in Figs. 2 and 3. Figure 2 
shows dimensionless velocity profiles for various values of n and the injection parameter 
(suction) 8 [i) n = 2; 2) 1.25; 3) 0.5]. Figure 3 shows the position of the front of the 
shear perturbations as a function of the injection parameter (Suction) 8 for varlous values 
of the rheological constant n [i) n = 2; 2) 1.25; 3) 1.15]. 

The authors thank K. B. Pavlov for a discussion of the results reported in the article. 
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VISCOUS EXPLOSION DURING THE NONISOTKERMAL MOTION OF AN 

INCOMPRESSIBLE LIQUID 

N. B. Aleksapol'skii and V. i. Naidenov UDC 532.135 

The hydrodynamic thermal explosion of an incompressible liquid moving under pressure 
in pipes was predicted theoretically in [1-3]. 

We present the hydraulic theory of a viscous explosion, which is caused by the non- 
linear temperature dependence of viscosity. 

Let us consider the laminar motion of an incompressible liquid in a circular pipe of 
radius R and length L. The pressure is p, at the pipe inlet and p2 at the outlet, The 
temperature of the liquid at the inlet cross section is To, and a steady heat flux 
X3T/~r = qw < 0 is specified at the pipe walls (heat is removed from the liquldg. The 
physical quantities X, p, and Cp are assumed constant in the temperature range considered. 

It is assumed that the Peclet number Pe = uP~oC~/X>>l, so tha~ axial heat conduction 
can be neglected in the heat-balance equation. We llnearize the convective terms of this 
equation in the following way [4]: 

R 

v grad T ~ Q Or  [ ~ r S d r  
~ R 2  Oz ' Q = - -  n ] d r  �9 

0 

Thus, we consider the equation 

~,a(aT) pCvO air %-~ r ~  = ~B z ax" 
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